Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Hortic ; 4(1): 15, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38649966

RESUMEN

The molecular basis of orchid flower development involves a specific regulatory program in which MADS-box transcription factors play a central role. The recent 'perianth code' model hypothesizes that two types of higher-order heterotetrameric complexes, namely SP complex and L complex, play pivotal roles in the orchid perianth organ formation. Therefore, we explored their roles and searched for other components of the regulatory network.Through the combined analysis for transposase-accessible chromatin with high-throughput sequencing and RNA sequencing of the lip-like petal and lip from Phalaenopsis equestris var.trilip, transcription factor-(TF) genes involved in lip development were revealed. PeNAC67 encoding a NAC-type TF and PeSCL23 encoding a GRAS-type TF were differentially expressed between the lip-like petal and the lip. PeNAC67 interacted with and stabilized PeMADS3, which positively regulated the development of lip-like petal to lip. PeSCL23 and PeNAC67 competitively bound with PeKAN2 and positively regulated the development of lip-like petal to petal by affecting the level of PeMADS3. PeKAN2 as an important TF that interacts with PeMADS3 and PeMADS9 can promote lip development. These results extend the 'perianth code' model and shed light on the complex regulation of orchid flower development.

3.
Micromachines (Basel) ; 14(9)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37763842

RESUMEN

In this work, the effects of total dose irradiation on the parasitic bipolar junction transistor (BTJ) in 130 nm PDSOI MOSFETs were investigated. The experimental results demonstrate that irradiation-induced oxide-trap charges can modify the E-B junction barrier, and thereby make the common-emitter gain ß0 of the parasitic BJT in NMOS device increase, while decreasing it in a PMOS device. Additionally, irradiation-generated oxide-trap charges in shallow trench isolation (STI) elevate the surface electrostatic potential of the gate above the STI sidewall, thus providing an additional channel from the emitter to the collector. Moreover, these charges may generate parasitic reverse conductive paths at the STI/Si interface under high dose irradiation, thereby enhancing the leakage current in the front gate channel and diminishing the significance of the parasitic BJT. Under irradiation, the electric field intensity difference between two biases leads to higher ß0 of the parasitic BJT in PG-biased devices than in ON-biased ones. Furthermore, the lifting effect of irradiation on ß0 increases in wide or short channel irradiated devices, which can be explained using simulations and an emitter current crowding effect model.

4.
Mol Plant ; 16(4): 775-789, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36919242

RESUMEN

In the post-genome-wide association study era, multi-omics techniques have shown great power and potential for candidate gene mining and functional genomics research. However, due to the lack of effective data integration and multi-omics analysis platforms, such techniques have not still been applied widely in rapeseed, an important oil crop worldwide. Here, we report a rapeseed multi-omics database (BnIR; http://yanglab.hzau.edu.cn/BnIR), which provides datasets of six omics including genomics, transcriptomics, variomics, epigenetics, phenomics, and metabolomics, as well as numerous "variation-gene expression-phenotype" associations by using multiple statistical methods. In addition, a series of multi-omics search and analysis tools are integrated to facilitate the browsing and application of these datasets. BnIR is the most comprehensive multi-omics database for rapeseed so far, and two case studies demonstrated its power to mine candidate genes associated with specific traits and analyze their potential regulatory mechanisms.


Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/genética , Multiómica , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Genómica , Brassica rapa/genética
5.
J Adv Res ; 42: 289-301, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36513419

RESUMEN

INTRODUCTION: Heterosis is the major event driving plant development and promoting crop breeding, but the molecular bases for this phenomenon remain elusive. OBJECTIVES: We aim to explore the effect of three-dimensional (3D) chromatin architecture on the underlying mechanism of heterosis. METHODS: Here, we constructed the North Carolina II (NC-II) population to select superior and inferior heterosis sets by comparing mid-parent heterosis (MPH) in Brassica napus. To decipher the impact of 3D chromatin architecture on the underlying mechanism of heterosis, we combined genetics, transcriptomics and 3D genomics approaches. RESULTS: We suggest that F1 hybrids with superior heterosis tend to contain more transcriptionally active A compartments compared with F1 hybrids with inferior heterosis, and approximately 19-21% compartment significantly altered in the F1 hybrids relative to the parental lines. Further analyses show that chromatin compartments correlate with genetic variance among parents, which may form the basis for differentially active chromatin compartments. Having more A compartments in F1 hybrids confers a more accessible chromatin circumstance, which promotes a higher proportion of highly expressed ELD (expression level dominance) genes in superior heterosis F1 hybrids (46-64%) compared with inferior heterosis F1 hybrids (22-31%). Moreover, genes related to hormones which affect plant growth, are more up-regulated with changes of 3D genome architecture, and we validate that increased hormone content contributes to cell proliferation and expansion by influencing the key genes of cell cycle thereby promoting leaf size. CONCLUSION: Dynamic 3D chromatin architecture correlates with genetic variance among parents and contributes to heterosis in Brassica napus.


Asunto(s)
Brassica napus , Vigor Híbrido , Vigor Híbrido/genética , Brassica napus/genética , Cromatina/genética , Fitomejoramiento , Hojas de la Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...